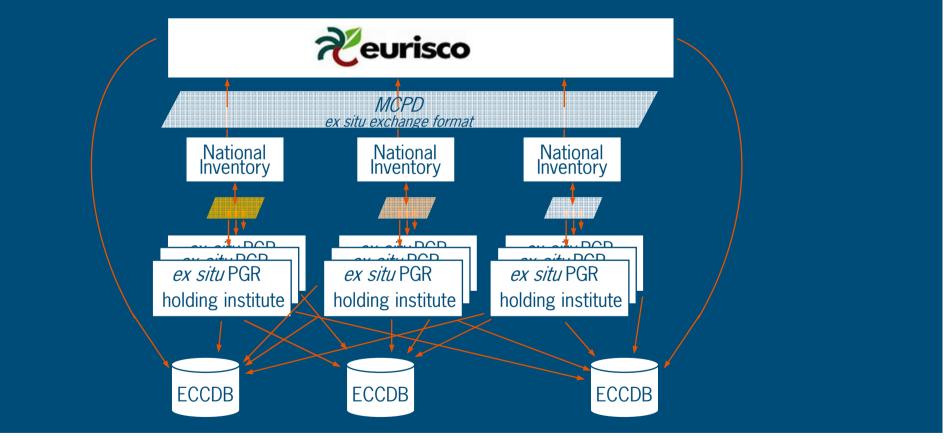
The European *ex situ* PGR Information Landscape

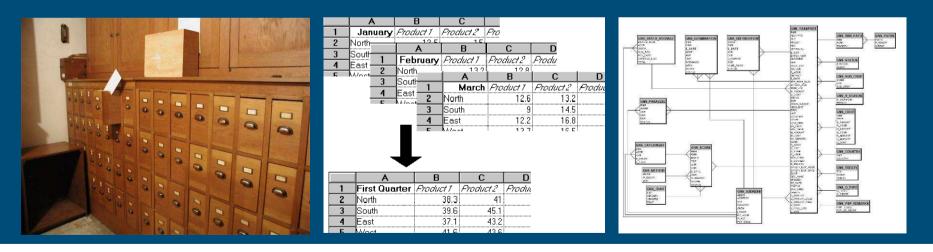
Theo van Hintum, Frank Begemann, Lorenzo Maggioni ECPGR Documentation and Information Network Coordinating Group


the presentation

- components of the landscape
 - systems at institutional level
 - systems at national level
 - systems at European level
- changes in the landscape
- technical developments and challenges
- next steps

• conclusions

the current landscape



basic elements of the landscape: local documentation systems of actors conserving PGR

- paper
- spreadsheets
- database management software (DBMS)

database management software (DBMS)

- popular brands: MySQL, MS-Access, Oracle
- allows for proper database management
 - data integrity
 - data security
 - data processing
- requires investments
 - license, installation and maintenance
- requires application based on data-model
 - define structure of the data (what data?)
 - define and implement the functionalities

data categories

- genebank management data
 - internal use only (data models vary)
- passport data
 - broad external use (institute, national, European, incl. breeders)
 - fairly standardized (MCPD-list)
- characterization & evaluation data
 - broad external use (breeders, researchers, others incl. institutes)
 - range of models varying level of detail
- data about distribution and use of germplasm
 - institute (internal), national, international administration (e.g. Treaty)

coding systems for *ex situ* PGR documentation

- hardly any standard coding systems, controlled vocabularies or ontologies are available
 - MCPD contains or refers to coding systems for a/o countries, origin types, population types
 - institute codes remains a problem attempt of World Information and Early Warning System on Plant Genetic Resources (WIEWS)
 - trait names several standards are available (Bioversity, UPOV) rather low acceptance, incomplete crop coverage, inconsistency amongst standards
 - no systems for taxonomy, or other descriptors (user type, coordinate type, etc.)

systems at national level

- most prominent: National Inventory
 - initiated by EPGRIS project as part of the establishment of EURISCO
 - established in most European countries 1.1 million accessions in 38 countries
 - standardized data (MCPD)
 - act as national interface to systems at regional or global level
 - not always optimally accessible individually all accessible via EURISCO
 - content at discretion of National Focal Point (NFP)
 - restricted to passport data
 - good entry point for coordination and capacity building

systems at regional level

- European Central Crop Databases (ECCDBs)
 - long history role of ECPGR
 - role in collaboration (GENRES projects)
 - very many established: 62 ECCDBs with 0.75 million accessions
 - mainly passport data, some (12 ECCDBs) with C&E data
 - data come directly from local systems plus EURISCO
 - wide variety with regard to completeness, data quality, age of datasets, inclusion of C&E data, and possibility to search or download them via the web

systems at regional level

- EURISCO
 - established by EU project EPGRIS (2000-2003)
 - now under responsibility of ECPGR

- managed by Bioversity in collaboration with National Focal Points of National Inventories
- 1.1 million accessions from >240 holding institutions in 38 participating countries
- new interface recently introduced
- data from National Inventories some are old !

changes in the landscape

- requirements International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) and the Convention on Biological Diversity (CBD)
 - registration of MLS material EURISCO can easily accommodate
 - reporting of transactions EURISCO might play a role
- new global Accession Level Information System (ALIS) is being established
 - EURISCO can act as data source
- AEGIS requires a level of data management
 - EURISCO can easily accommodate

changes in the landscape

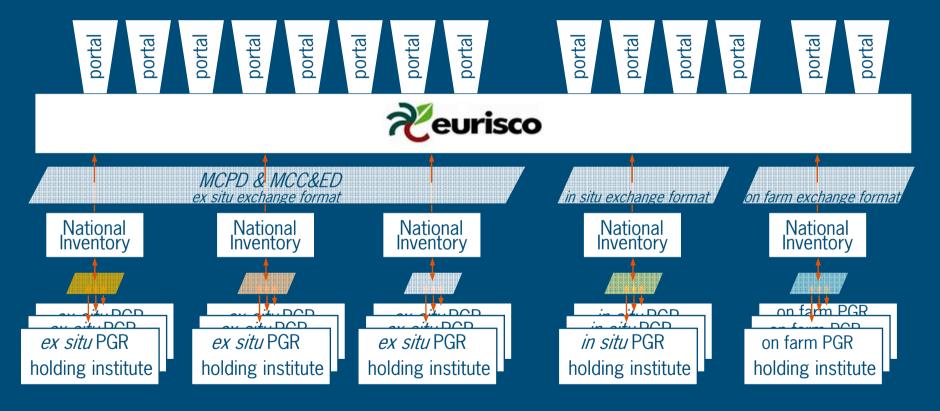
- role of ECCDBs is changing from passport data gathering points to crop specific PGR entry points
 - C&E data and research results (markers etc.) are more relevant
 - new roles might arise (catalyze crop groups activities: improving data quality at data source, supporting activities related to AEGIS, creating crop portals)
 - new role requires EURISCO to be the one-stop-shop for passport data

technological changes

- quality of data is getting higher
 - experts are 'closer to the data'
 - higher exposure of data
- other types of data are becoming available and required
 - the user requires C&E data
 - making these accessible proves to be a major challenge
 - molecular and other types of data are being generated
- more services can be provided
 - on-line access allows on-line ordering and handling MTAs

technological changes

- establishment of virtual genebanks
 - data sources and data providers are separated web-services allow direct access for computers to databases
 - user can search and order material from a combination of genebanks without needing to know where the data / material comes from
 - technology is available (ref GBIF), agreement on the policy level and an upgrade of most local systems is required
- crop portals
 - changing the focus from the data provider (genebank) to specific user groups (breeders / scientists / policy makers)
 - data from a variety of sources, incl. genebanks, scientific literature



technological changes

- relationship EURISCO ECCDBs
 - EURISCO should be the 'source' for passport data, giving web-service access but: National Inventories need to be completed
 - ECCDBs should develop into crop portals
 - more interfacing
 - more services
 - less databasing

the dreamscape

next steps

- standards
 - develop and adopt more and better standards: e.g. C&E data
 - expansion of MCPD to accommodate Treaty and AEGIS requirements
 - compliance to Access to Biological Collection Data (ABCD)
 - introduction and use of life science identifiers (LSID)
- technology
 - adopt existing technology to PGR community establish few testing sites
 - invest in open source genebank documentation system (possibly GRIN-Global provides a starting point)

next steps

- capacity building
 - many collaborating institutions still lack technical and personal capacity: need for teaching and training materials, teaching workshops, staff exchanges and other capacity building activities
 - for a start: NFPs and ECCDB managers provide a good audience

• improve data quality

- garbage in garbage out
- institutions should concentrate on improving their own data quality

coordination

- current actors
 - ECPGR Documentation and Information Network Coordinating Group
 - EPGRIS3 (a self-funded initiative)
 - Global Crop Diversity Trust
 - Generation Challenge Programme (GCP)
 - Global Public Goods Programme (GPG2)
- Europe could benefit more from these programs if more priority would be given, and more capacity would be made available to PGR documentation at all levels: institutional, national and European

concluding remarks

- PGR documentation is crucial for PGR use and coordination of PGR activities
- the technology is available
- obstacles are
 - low data quality
 - low standardization
 - lack of technical knowledge

 increasing priority of PGR documentation makes complete sense

